Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6995, 2024 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-38523196

RESUMO

The allometric trophic network (ATN) framework for modeling population dynamics has provided numerous insights into ecosystem functioning in recent years. Herein we extend ATN modeling of the intertidal ecosystem off central Chile to include empirical data on pelagic chlorophyll-a concentration. This intertidal community requires subsidy of primary productivity to support its rich ecosystem. Previous work models this subsidy using a constant rate of phytoplankton input to the system. However, data shows pelagic subsidies exhibit highly variable, pulse-like behavior. The primary contribution of our work is incorporating this variable input into ATN modeling to simulate how this ecosystem may respond to pulses of pelagic phytoplankton. Our model results show that: (1) closely related sea snails respond differently to phytoplankton variability, which is explained by the underlying network structure of the food web; (2) increasing the rate of pelagic-intertidal mixing increases fluctuations in species' biomasses that may increase the risk of local extirpation; (3) predators are the most sensitive species to phytoplankton biomass fluctuations, putting these species at greater risk of extirpation than others. Finally, our work provides a straightforward way to incorporate empirical, time-series data into the ATN framework that will expand this powerful methodology to new applications.


Assuntos
Ecossistema , Fitoplâncton , Chile , Cadeia Alimentar , Biomassa
2.
Nat Commun ; 14(1): 5797, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723167

RESUMO

Understanding the assembly of plant-pollinator communities has become critical to their conservation given the rise of species invasions, extirpations, and species' range shifts. Over the course of assembly, colonizer establishment produces core interaction patterns, called motifs, which shape the trajectory of assembling network structure. Dynamic assembly models can advance our understanding of this process by linking the transient dynamics of colonizer establishment to long-term network development. In this study, we investigate the role of intra-guild indirect interactions and adaptive foraging in shaping the structure of assembling plant-pollinator networks by developing: 1) an assembly model that includes population dynamics and adaptive foraging, and 2) a motif analysis tracking the intra-guild indirect interactions of colonizing species throughout their establishment. We find that while colonizers leverage indirect competition for shared mutualistic resources to establish, adaptive foraging maintains the persistence of inferior competitors. This produces core motifs in which specialist and generalist species coexist on shared mutualistic resources which leads to the emergence of nested networks. Further, the persistence of specialists develops richer and less connected networks which is consistent with empirical data. Our work contributes new understanding and methods to study the effects of species' intra-guild indirect interactions on community assembly.


Assuntos
Polinização , Simbiose , Dinâmica Populacional
3.
Sci Rep ; 13(1): 3881, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36890140

RESUMO

As modeling tools and approaches become more advanced, ecological models are becoming more complex. Traditional sensitivity analyses can struggle to identify the nonlinearities and interactions emergent from such complexity, especially across broad swaths of parameter space. This limits understanding of the ecological mechanisms underlying model behavior. Machine learning approaches are a potential answer to this issue, given their predictive ability when applied to complex large datasets. While perceptions that machine learning is a "black box" linger, we seek to illuminate its interpretive potential in ecological modeling. To do so, we detail our process of applying random forests to complex model dynamics to produce both high predictive accuracy and elucidate the ecological mechanisms driving our predictions. Specifically, we employ an empirically rooted ontogenetically stage-structured consumer-resource simulation model. Using simulation parameters as feature inputs and simulation output as dependent variables in our random forests, we extended feature analyses into a simple graphical analysis from which we reduced model behavior to three core ecological mechanisms. These ecological mechanisms reveal the complex interactions between internal plant demography and trophic allocation driving community dynamics while preserving the predictive accuracy achieved by our random forests.


Assuntos
Modelos Teóricos , Algoritmo Florestas Aleatórias
4.
Trends Ecol Evol ; 38(3): 301-312, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36437144

RESUMO

Bioenergetic approaches have been greatly influential for understanding community functioning and stability and predicting effects of environmental changes on biodiversity. These approaches use allometric relationships to establish species' trophic interactions and consumption rates and have been successfully applied to aquatic ecosystems. Terrestrial ecosystems, where body mass is less predictive of plant-consumer interactions, present inherent challenges that these models have yet to meet. Here, we discuss the processes governing terrestrial plant-consumer interactions and develop a bioenergetic framework integrating those processes. Our framework integrates bioenergetics specific to terrestrial plants and their consumers within a food web approach while also considering mutualistic interactions. Such a framework is poised to advance our understanding of terrestrial food webs and to predict their responses to environmental changes.


Assuntos
Ecossistema , Cadeia Alimentar , Biodiversidade , Metabolismo Energético
5.
Am Nat ; 200(2): 202-216, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35905405

RESUMO

AbstractPollination and seed dispersal mutualisms are critical for biodiversity and ecosystem services yet face mounting threats from anthropogenic perturbations that cause their populations to decline. Characterizing the dynamics of these mutualisms when populations are at low density is important to anticipate consequences of these perturbations. We developed simple population dynamic models detailed enough to distinguish different mechanisms by which plant populations benefit from animal pollination or seed dispersal. We modeled benefits as functions of foraging rate by animals on plant rewards and specified whether they affected plant seed set, germination, or negative density dependence during recruitment. We found that pollination and seed dispersal mutualisms are stable at high density but exhibit different dynamics at low density, depending on plant carrying capacity, animal foraging efficiency, and whether populations are obligate on their partners for persistence. Under certain conditions, all mutualisms experience destabilizing thresholds in which one population declines because its partner is too rare. Plants additionally experience Allee effects when obligate on pollinators. Finally, pollination mutualisms can exhibit bistable coexistence at low or high density when plants are facultative on pollinators. Insights from our models can inform conservation efforts, as mutualist populations continue to decline globally.


Assuntos
Polinização , Dispersão de Sementes , Animais , Ecossistema , Plantas , Simbiose
6.
Sci Rep ; 11(1): 21274, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711894

RESUMO

The patterns of diet specialization in food webs determine community structure, stability, and function. While specialists are often thought to evolve due to greater efficiency, generalists should have an advantage in systems with high levels of variability. Here we test the generalist-disturbance hypothesis using a dynamic, evolutionary food web model. Species occur along a body size axis with three traits (body size, feeding center, feeding range) that evolve independently and determine interaction strengths. Communities are assembled via ecological and evolutionary processes, where species biomass and persistence are driven by a bioenergetics model. New species are introduced either as mutants similar to parent species in the community or as invaders, with dissimilar traits. We introduced variation into communities by increasing the dissimilarity of invading species across simulations. We found that strange invaders increased the variability of communities which increased both the degree of generalism and the relative persistence of generalist species, indicating that invasion disturbance promotes the evolution of generalist species in food webs.


Assuntos
Evolução Biológica , Ecossistema , Cadeia Alimentar , Espécies Introduzidas , Algoritmos , Modelos Teóricos , Dinâmica Populacional
7.
Ecol Lett ; 24(12): 2648-2659, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34532944

RESUMO

Variation in dietary specialisation stems from fundamental interactions between species and their environment. Consequently, understanding the drivers of this variation is key to understanding ecological and evolutionary processes. Dietary specialisation in wild bees has received attention due to their close mutualistic dependence on plants, and because both groups are threatened by biodiversity loss. Many principles governing pollinator specialisation have been identified, but they remain largely unvalidated. Organismal phenology has the potential to structure realised specialisation by determining concurrent resource availability and pollinator foraging activity. We evaluate this principle using mechanistic models of adaptive foraging in pollinators within plant-pollinator networks. While temporal resource overlap has little impact on specialisation in pollinators with extended flight periods, reduced overlap increases specialisation as pollinator flight periods decrease. These results are corroborated empirically using pollen load data taken from bees with shorter and longer flight periods across environments with high and low temporal resource overlap.


Assuntos
Magnoliopsida , Polinização , Animais , Abelhas , Flores , Plantas , Pólen
8.
Nat Commun ; 12(1): 3911, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162855

RESUMO

Empirical measurements of ecological networks such as food webs and mutualistic networks are often rich in structure but also noisy and error-prone, particularly for rare species for which observations are sparse. Focusing on the case of plant-pollinator networks, we here describe a Bayesian statistical technique that allows us to make accurate estimates of network structure and ecological metrics from such noisy observational data. Our method yields not only estimates of these quantities, but also estimates of their statistical errors, paving the way for principled statistical analyses of ecological variables and outcomes. We demonstrate the use of the method with an application to previously published data on plant-pollinator networks in the Seychelles archipelago and Kosciusko National Park, calculating estimates of network structure, network nestedness, and other characteristics.


Assuntos
Algoritmos , Insetos/fisiologia , Modelos Biológicos , Plantas/parasitologia , Polinização/fisiologia , Animais , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/estatística & dados numéricos , Ecossistema , Interações Hospedeiro-Parasita , New South Wales , Parques Recreativos , Seicheles
9.
Am Nat ; 197(4): 393-404, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33755542

RESUMO

AbstractContemporary niche theory is a useful framework for understanding how organisms interact with each other and with their shared environment. Its graphical representation, popularized by Tilman's resource ratio hypothesis, facilitates analysis of the equilibrium structure of complex dynamical models, including species coexistence. This theory has been applied primarily to resource competition since its early beginnings. Here, we integrate mutualism into niche theory by expanding Tilman's graphical representation to the analysis of consumer-resource dynamics of plant-pollinator networks. We graphically explain the qualitative phenomena previously found by numerical simulations, including the effects on community dynamics of nestedness, adaptive foraging, and pollinator invasions. Our graphical approach promotes the unification of niche and network theories and deepens the synthesis of different types of interactions within a consumer-resource framework.


Assuntos
Ecossistema , Comportamento Alimentar , Modelos Biológicos , Polinização , Simbiose , Animais
10.
Sci Rep ; 11(1): 1765, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33469119

RESUMO

Top-down and bottom-up forces determine ecosystem function and dynamics. Fisheries as a top-down force can shorten and destabilize food webs, while effects driven by climate change can alter the bottom-up forces of primary productivity. We assessed the response of a highly-resolved intertidal food web to these two global change drivers, using network analysis and bioenergetic modelling. We quantified the relative importance of artisanal fisheries as another predator species, and evaluated the independent and combined effects of fisheries and changes in plankton productivity on food web dynamics. The food web was robust to the loss of all harvested species but sensitive to the decline in plankton productivity. Interestingly, fisheries dampened the negative impacts of decreasing plankton productivity on non-harvested species by reducing the predation pressure of harvested consumers on non-harvested resources, and reducing the interspecific competition between harvested and non-harvested basal species. In contrast, the decline in plankton productivity increased the sensitivity of harvested species to fishing by reducing the total productivity of the food web. Our results show that strategies for new scenarios caused by climate change are needed to protect marine ecosystems and the wellbeing of local communities dependent on their resources.

11.
Ecol Evol ; 11(24): 17651-17671, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35003630

RESUMO

Mutualisms are ubiquitous in nature, provide important ecosystem services, and involve many species of interest for conservation. Theoretical progress on the population dynamics of mutualistic interactions, however, comparatively lagged behind that of trophic and competitive interactions, leading to the impression that ecologists still lack a generalized framework to investigate the population dynamics of mutualisms. Yet, over the last 90 years, abundant theoretical work has accumulated, ranging from abstract to detailed. Here, we review and synthesize historical models of two-species mutualisms. We find that population dynamics of mutualisms are qualitatively robust across derivations, including levels of detail, types of benefit, and inspiring systems. Specifically, mutualisms tend to exhibit stable coexistence at high density and destabilizing thresholds at low density. These dynamics emerge when benefits of mutualism saturate, whether due to intrinsic or extrinsic density dependence in intraspecific processes, interspecific processes, or both. We distinguish between thresholds resulting from Allee effects, low partner density, and high partner density, and their mathematical and conceptual causes. Our synthesis suggests that there exists a robust population dynamic theory of mutualism that can make general predictions.

12.
Sci Adv ; 6(45)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33148659

RESUMO

Understanding anthropogenic impacts on ecosystems requires investigating feedback processes between ecological and economic dynamics. While network ecology has advanced our understanding of large-scale communities, it has not robustly coupled economic drivers of anthropogenic impact to ecological outcomes. Leveraging allometric trophic network models, we study such integrated economic-ecological dynamics in the case of fishery sustainability. We incorporate economic drivers of fishing effort into food-web network models, evaluating the dynamics of thousands of single-species fisheries across hundreds of simulated food webs under fixed-effort and open-access management strategies. Analyzing simulation results reveals that harvesting species with high population biomass can initially support fishery persistence but threatens long-term economic and ecological sustainability by indirectly inducing extinction cascades in non-harvested species. This dynamic is exacerbated in open-access fisheries where profit-driven growth in fishing effort increases perturbation strength. Our results demonstrate how network theory provides necessary ecological context when considering the sustainability of economically dynamic fishing effort.


Assuntos
Ecossistema , Pesqueiros , Animais , Biomassa , Conservação dos Recursos Naturais/métodos , Peixes , Cadeia Alimentar , Dinâmica Populacional
13.
Nat Commun ; 11(1): 2182, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32358490

RESUMO

Ecosystems are composed of complex networks of many species interacting in different ways. While ecologists have long studied food webs of feeding interactions, recent studies increasingly focus on mutualistic networks including plants that exchange food for reproductive services provided by animals such as pollinators. Here, we synthesize both types of consumer-resource interactions to better understand the controversial effects of mutualism on ecosystems at the species, guild, and whole-community levels. We find that consumer-resource mechanisms underlying plant-pollinator mutualisms can increase persistence, productivity, abundance, and temporal stability of both mutualists and non-mutualists in food webs. These effects strongly increase with floral reward productivity and are qualitatively robust to variation in the prevalence of mutualism and pollinators feeding upon resources in addition to rewards. This work advances the ability of mechanistic network theory to synthesize different types of interactions and illustrates how mutualism can enhance the diversity, stability, and function of complex ecosystems.


Assuntos
Cadeia Alimentar , Polinização , Simbiose , Animais , Biodiversidade , Biomassa , Simulação por Computador , Fenômenos Ecológicos e Ambientais , Modelos Biológicos , Plantas
14.
Ecol Lett ; 22(9): 1517-1534, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31243858

RESUMO

Plant-animal mutualistic networks sustain terrestrial biodiversity and human food security. Global environmental changes threaten these networks, underscoring the urgency for developing a predictive theory on how networks respond to perturbations. Here, I synthesise theoretical advances towards predicting network structure, dynamics, interaction strengths and responses to perturbations. I find that mathematical models incorporating biological mechanisms of mutualistic interactions provide better predictions of network dynamics. Those mechanisms include trait matching, adaptive foraging, and the dynamic consumption and production of both resources and services provided by mutualisms. Models incorporating species traits better predict the potential structure of networks (fundamental niche), while theory based on the dynamics of species abundances, rewards, foraging preferences and reproductive services can predict the extremely dynamic realised structures of networks, and may successfully predict network responses to perturbations. From a theoretician's standpoint, model development must more realistically represent empirical data on interaction strengths, population dynamics and how these vary with perturbations from global change. From an empiricist's standpoint, theory needs to make specific predictions that can be tested by observation or experiments. Developing models using short-term empirical data allows models to make longer term predictions of community dynamics. As more longer term data become available, rigorous tests of model predictions will improve.


Assuntos
Modelos Biológicos , Plantas , Simbiose , Animais , Comportamento Apetitivo , Biodiversidade , Polinização , Dinâmica Populacional , Reprodução
15.
Ecol Evol ; 9(6): 3651-3660, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30988900

RESUMO

Body size determines key ecological and evolutionary processes of organisms. Therefore, organisms undergo extensive shifts in resources, competitors, and predators as they grow in body size. While empirical and theoretical evidence show that these size-dependent ontogenetic shifts vastly influence the structure and dynamics of populations, theory on how those ontogenetic shifts affect the structure and dynamics of ecological networks is still virtually absent.Here, we expand the Allometric Trophic Network (ATN) theory in the context of aquatic food webs to incorporate size-structure in the population dynamics of fish species. We do this by modifying a food web generating algorithm, the niche model, to produce food webs where different fish life-history stages are described as separate nodes which are connected through growth and reproduction. Then, we apply a bioenergetic model that uses the food webs and the body sizes generated by our niche model to evaluate the effect of incorporating life-history structure into food web dynamics.We show that the larger the body size of a fish species respective to the body size of its preys, the higher the biomass attained by the fish species and the greater the ecosystem stability. We also find that the larger the asymptotic body size attained by fish species the larger the total ecosystem biomass, a result that holds true for both the largest fish in the ecosystem and each fish species in the ecosystem.This work provides an expanded ATN theory that generates food webs with life-history structure for chosen species. Our work offers a systematic approach for disentangling the effects of increasing life-history complexity in food-web models.

16.
Nat Commun ; 9(1): 2153, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29855466

RESUMO

Species invasions constitute a major and poorly understood threat to plant-pollinator systems. General theory predicting which factors drive species invasion success and subsequent effects on native ecosystems is particularly lacking. We address this problem using a consumer-resource model of adaptive behavior and population dynamics to evaluate the invasion success of alien pollinators into plant-pollinator networks and their impact on native species. We introduce pollinator species with different foraging traits into network models with different levels of species richness, connectance, and nestedness. Among 31 factors tested, including network and alien properties, we find that aliens with high foraging efficiency are the most successful invaders. Networks exhibiting high alien-native diet overlap, fraction of alien-visited plant species, most-generalist plant connectivity, and number of specialist pollinator species are the most impacted by invaders. Our results mimic several disparate observations conducted in the field and potentially elucidate the mechanisms responsible for their variability.


Assuntos
Abelhas/fisiologia , Ecossistema , Plantas/parasitologia , Polinização/fisiologia , Algoritmos , Animais , Flores/parasitologia , Insetos/classificação , Insetos/fisiologia , Modelos Biológicos , Especificidade da Espécie
18.
Ecol Lett ; 19(10): 1277-86, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27600659

RESUMO

Much research debates whether properties of ecological networks such as nestedness and connectance stabilise biological communities while ignoring key behavioural aspects of organisms within these networks. Here, we computationally assess how adaptive foraging (AF) behaviour interacts with network architecture to determine the stability of plant-pollinator networks. We find that AF reverses negative effects of nestedness and positive effects of connectance on the stability of the networks by partitioning the niches among species within guilds. This behaviour enables generalist pollinators to preferentially forage on the most specialised of their plant partners which increases the pollination services to specialist plants and cedes the resources of generalist plants to specialist pollinators. We corroborate these behavioural preferences with intensive field observations of bee foraging. Our results show that incorporating key organismal behaviours with well-known biological mechanisms such as consumer-resource interactions into the analysis of ecological networks may greatly improve our understanding of complex ecosystems.


Assuntos
Adaptação Fisiológica , Abelhas/fisiologia , Ecossistema , Comportamento Alimentar , Polinização/fisiologia , Animais , Modelos Biológicos
19.
Sci Rep ; 6: 22245, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26915461

RESUMO

Fishing is widely known to magnify fluctuations in targeted populations. These fluctuations are correlated with population shifts towards young, small, and more quickly maturing individuals. However, the existence and nature of the mechanistic basis for these correlations and their potential ecosystem impacts remain highly uncertain. Here, we elucidate this basis and associated impacts by showing how fishing can increase fluctuations in fishes and their ecosystem, particularly when coupled with decreasing body sizes and advancing maturation characteristic of the life-history changes induced by fishing. More specifically, using an empirically parameterized network model of a well-studied lake ecosystem, we show how fishing may both increase fluctuations in fish abundances and also, when accompanied by decreasing body size of adults, further decrease fish abundance and increase temporal variability of fishes' food resources and their ecosystem. In contrast, advanced maturation has relatively little effect except to increase variability in juvenile populations. Our findings illustrate how different mechanisms underlying life-history changes that may arise as evolutionary responses to intensive, size-selective fishing can rapidly and continuously destabilize and degrade ecosystems even after fishing has ceased. This research helps better predict how life-history changes may reduce fishes' resilience to fishing and ecosystems' resistance to environmental variations.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Pesqueiros , Peixes/crescimento & desenvolvimento , Algoritmos , Animais , Biomassa , Tamanho Corporal/fisiologia , Simulação por Computador , Conservação dos Recursos Naturais/estatística & dados numéricos , Peixes/classificação , Humanos , Estágios do Ciclo de Vida/fisiologia , Modelos Teóricos , Fitoplâncton/crescimento & desenvolvimento , Dinâmica Populacional , Fatores de Tempo
20.
Ecol Lett ; 18(4): 385-400, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25735791

RESUMO

The strength of species interactions influences strongly the structure and dynamics of ecological systems. Thus, quantifying such strength is crucial to understand how species interactions shape communities and ecosystems. Although the concepts and measurement of interaction strength in food webs have received much attention, there has been comparatively little progress in the context of mutualism. We propose a conceptual scheme for studying the strength of plant-animal mutualistic interactions. We first review the interaction strength concepts developed for food webs, and explore how these concepts have been applied to mutualistic interactions. We then outline and explain a conceptual framework for defining ecological effects in plant-animal mutualisms. We give recommendations for measuring interaction strength from data collected in field studies based on a proposed approach for the assessment of interaction strength in plant-animal mutualisms. This approach is conceptually integrative and methodologically feasible, as it focuses on two key variables usually measured in field studies: the frequency of interactions and the fitness components influenced by the interactions.


Assuntos
Cadeia Alimentar , Modelos Biológicos , Simbiose , Animais , Ecologia/métodos , Modelos Logísticos , Plantas , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...